Skip to content

minus-Z90 gate

Identifier Operator Example statement
mZ90 \(Z^{-1/2}\) mZ90 q[0]

Description

The minus-Z90 gate, i.e., the complex conjugate (inverse) of the Z90 gate, is an anti-clockwise rotation of \(-\pi / 2\) [rad] about the \(\hat{\mathbf{z}}\)-axis and a global phase of \(-\pi / 4\) [rad].

It is equal to the complex conjugate (inverse) of the S gate, the S-dagger gate: \(S^{\dagger} = Z^{-1/2}\).

Aliases

Also known as the S-dagger gate.

Properties

Representation

\[\begin{align} Z^{-1/2} &= \left(\begin{matrix} 1 & 0 \\ 0 & -i \end{matrix}\right) \end{align}\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The mZ90 gate is given by:

\[\begin{align} Z^{-1/2} &= R_\hat{\mathbf{n}}\left([0, 0, 1]^T, -\frac{\pi}{2}, -\frac{\pi}{4}\right) = e^{-i\frac{\pi}{4}} \cdot e^{i\frac{\pi}{4}\sigma_z}, \\ \\ Z^{-1/2} &= \left(\begin{matrix} 1 & 0 \\ 0 & -i \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the mZ90 gate \(Z^{-1/2}_H\) is given by:

\[Z^{-1/2}_H = HS^\dagger H = \frac{1}{2}\left(\begin{matrix} 1 - i & 1 + i \\ 1 + i & 1 - i \end{matrix}\right)=X^{-1/2}.\]

Operation examples

Standard basis

\[\begin{align} Z^{-1/2}\,|0\rangle &= |0\rangle \\ \\ Z^{-1/2}\,|1\rangle &= -i|1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} Z^{-1/2}\,|+\rangle &= \frac{1 - i}{2}|+\rangle + \frac{1 + i}{2}|-\rangle \\ \\ Z^{-1/2}\,|-\rangle &= \frac{1 + i}{2}|+\rangle + \frac{1 - i}{2}|-\rangle \\ \end{align}\]