Skip to content

Y90 gate

Identifier Operator Example statement
Y90 \(Y^{1/2}\) Y90 q[0]

Description

The Y90 gate is an anti-clockwise rotation of \(\pi/2\) [rad] about the \(\hat{\mathbf{y}}\)-axis and a global phase of \(\pi/4\) [rad].

It is equal to half the \(Y\) rotation: \(Y^{1/2}\)

Properties

Representation

\[\begin{align} Y^{1/2} &= \frac{1}{2}\left(\begin{matrix} 1 + i & -1 - i \\ 1 + i & 1 + i \end{matrix}\right) \end{align}\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The Y90 gate is given by:

\[\begin{align} Y^{1/2} &= R_\hat{\mathbf{n}}\left([0, 1, 0]^T, \frac{\pi}{2}, \frac{\pi}{4}\right) = e^{i\frac{\pi}{4}} \cdot e^{-i\frac{\pi}{4}\sigma_y}, \\ \\ Y^{1/2} &= \frac{1}{2}\left(\begin{matrix} 1 + i & -1 - i \\ 1 + i & 1 + i \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Y90 gate \(Y^{1/2}_H\) is given by:

\[Y^{1/2}_H = HY^{1/2}H = \frac{1}{2}\left(\begin{matrix} 1 + i & 1 + i \\ -1 - i & 1 + i \end{matrix}\right)=(Y^{1/2})^T.\]

Operation examples

Standard basis

\[\begin{align} Y^{1/2}\,|0\rangle &= \frac{1 + i}{2}|0\rangle + \frac{1 + i}{2}|1\rangle \\ \\ Y^{1/2}\,|1\rangle &= \frac{-1 - i}{2}|0\rangle + \frac{1 + i}{2}|1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} Y^{1/2}\,|+\rangle &= \frac{1 + i}{2}|+\rangle + \frac{-1 - i}{2}|-\rangle \\ \\ Y^{1/2}\,|-\rangle &= \frac{1 + i}{2}|+\rangle + \frac{1 + i}{2}|-\rangle \\ \end{align}\]