Skip to content

Identity gate

Identifier Operator Example statement
I \(I\) I q[0]

Description

The Identity gate is a gate that leaves the qubit state unchanged (NOP).

Note

Internally, an identity gate may be defined as a rotation of \(0\) radians about the z-axis and a global phase of \(0\).

Properties

Representation

\[I = \left(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}\right)\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the anti-clockwise angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The Identity gate can be represented in canonical form as:

\[\begin{align} I &= R_\hat{\mathbf{n}}\left(\left[0, 0, 1\right]^T, 0, 0\right) \\ \\ &= \left(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Identity gate \(I_H\) is given by:

\[I_H = HIH = \left(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}\right)=I.\]

Operation examples

Standard basis

\[\begin{align} I\,|0\rangle &= |0\rangle \\ \\ I\,|1\rangle &= |1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} I\,|+\rangle &= |+\rangle \\ \\ I\,|-\rangle &= |-\rangle \end{align}\]