Skip to content

Pauli-Z gate

Identifier Operator Example statement
Z \(Z\) Z q[0]

Description

The Pauli-Z, or Z, gate is an anti-clockwise rotation of \(\pi\) [rad] about the \(\hat{\mathbf{z}}\)-axis and a global phase of \(\pi/2\) [rad].

Aliases

Also known as the phase-flip gate.

Properties

Representation

\[\begin{align} Z = \sigma_z = \sigma_3 = \left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix}\right) \end{align}\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The Pauli-Z gate is given by:

\[\begin{align} Z &= R_\hat{\mathbf{n}}\left([0, 0, 1]^T, \pi, \frac{\pi}{2}\right) = e^{i\frac{\pi}{2}} \cdot e^{-i\frac{\pi}{2}\sigma_z}, \\ \\ Z &= \left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Pauli-Z gate \(Z_H\) is given by:

\[Z_H = HZH = \left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right)=X.\]

Operation examples

Standard basis

\[\begin{align} Z\,|0\rangle &= |0\rangle \\ \\ Z\,|1\rangle &= -|1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} Z\,|+\rangle &= |-\rangle \\ \\ Z\,|-\rangle &= |+\rangle \end{align}\]