Rn gate
Identifier |
Operator |
Example statement |
Rn |
\(R_\hat{\mathbf{n}}(\hat{\mathbf{n}}, \theta, \phi)\) |
Rn(1,0,0,pi,pi/2) q[0] |
Description
The canonical Rn gate is an anti-clockwise rotation with an angle of \(\theta\) [rad] about the specified axis
\(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) and a global phase of \(\phi\).
Note
The Rn
instruction expects the separate components of the axis \(\hat{\mathbf{n}}\),
i.e. \(n_x\), \(n_y\), and \(n_z\), as input arguments:
Rn(
\(n_x\),
\(n_y\),
\(n_z\),
\(\theta\),
\(\phi\))
qubit-argument
as shown in the Example statement in the table above.
Properties
The canonical representation of unitary matrices \(U(2)\) yields special unitary matrices \(SU(2)\),
with determinant \(\text{det} = +1\), when \(\phi\) equals zero.
\(SU(2)\) is the special unitary group of degree \(2\), and has a double cover of \(SO(3)\),
the group of rotations in 3-dimensional space.
This means that each element in \(SO(3)\) corresponds to two elements in \(SU(2)\).
Operations on Spin-\(\tfrac{1}{2}\) qubits, such as electron spin qubits, are represented by \(SU(2)\) matrices.
As an example, when a spin-qubit is operated on by an Rx gate it does not return to the same state
after a \(2\pi\) rotation, but only after a \(4\pi\) rotation.
The difference is a global phase of \(\pi\), which is insignificant by itself,
but will be relevant when using it in combination with the control modifier ctrl
,
which changes the gate \(U\) into the controlled- \(U\) gate.
Representation
Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical
representation:
\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]
where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].
Which expands to the matrix representation:
\[
R_\hat{\mathbf{n}}\left(\hat{\mathbf{n}}, \theta, \phi\right) = e^{i\phi} \cdot \left(\begin{matrix}
\cos\left(\theta / 2\right) - i n_z \sin\left(\theta / 2\right) & -n_y \sin\left(\theta / 2\right) - i n_x \sin\left(\theta / 2\right) \\
n_y \sin\left(\theta / 2\right) - i n_x \sin\left(\theta / 2\right) & \cos\left(\theta / 2\right) + i n_z \sin\left(\theta / 2\right)
\end{matrix}\right).
\]
In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Rn gate \(R_{\hat{\mathbf{n}},H}(...)\) is given by:
\[R_{\hat{\mathbf{n}},H}\left(\hat{\mathbf{n}}, \theta, \phi\right) = H R_\hat{\mathbf{n}}(\theta) H = e^{i\phi} \cdot \left(\begin{matrix}
\cos\left(\theta / 2\right) - i n_x \sin\left(\theta / 2\right) & n_y \sin\left(\theta / 2\right) - i n_z \sin\left(\theta / 2\right) \\
-n_y \sin\left(\theta / 2\right) - i n_z \sin\left(\theta / 2\right) & \cos\left(\theta / 2\right) + i n_x \sin\left(\theta / 2\right)
\end{matrix}\right)\]
Operation examples
Standard basis
\[\begin{align}
R_\hat{\mathbf{n}}\left(\hat{\mathbf{n}}, \theta, \phi\right)\,|0\rangle &= \left[\cos\left(\theta / 2\right) - i n_z \sin\left(\theta / 2\right)\right]|0\rangle + \left[n_y \sin\left(\theta / 2\right) - i n_x \sin\left(\theta / 2\right)\right]|1\rangle \\
\\
R_\hat{\mathbf{n}}\left(\hat{\mathbf{n}}, \theta, \phi\right)\,|1\rangle &= \left[-n_y \sin\left(\theta / 2\right) - i n_x \sin\left(\theta / 2\right)\right]|0\rangle + \left[\cos\left(\theta / 2\right) + i n_z \sin\left(\theta / 2\right)\right]|1\rangle \\
\end{align}\]
Hadamard basis
\[\begin{align}
R_\hat{\mathbf{n}}\left(\hat{\mathbf{n}}, \theta, \phi\right)\,|+\rangle &= \left[\cos\left(\theta / 2\right) - i n_x \sin\left(\theta / 2\right)\right]|+\rangle + \left[-n_y \sin\left(\theta / 2\right) - i n_z \sin\left(\theta / 2\right)\right]|-\rangle \\
\\
R_\hat{\mathbf{n}}\left(\hat{\mathbf{n}}, \theta, \phi\right)\,|-\rangle &= \left[n_y \sin\left(\theta / 2\right) - i n_z \sin\left(\theta / 2\right)\right]|+\rangle + \left[\cos\left(\theta / 2\right) + i n_x \sin\left(\theta / 2\right)\right]|-\rangle \\
\end{align}\]