Skip to content

T-dagger gate

Identifier Operator Example statement
Tdag \(T^\dagger\) Tdag q[0]

Description

The T-dagger gate, i.e., the complex conjugate (inverse) of the T gate, is an anti-clockwise rotation of \(-\pi / 4\) [rad] about the \(\hat{\mathbf{z}}\)-axis and a global phase of \(-\pi / 8\) [rad].

It is equal to half the \(S^{\dagger}\) rotation and a quarter of the inverse of the \(Z\) rotation: \(T = (S^{\dagger})^{1/2} = S^{-1/2} = Z^{-1/4}\).

Representation

\[\begin{align} T^\dagger &= \left(\begin{matrix} 1 & 0 \\ 0 & \frac{1 - i}{\sqrt{2}} \end{matrix}\right) \end{align}\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The T-dagger gate is given by:

\[\begin{align} T^\dagger &= R_\hat{\mathbf{n}}\left([0, 0, 1]^T, -\frac{\pi}{4}, -\frac{\pi}{8}\right) = e^{-i\frac{\pi}{8}} \cdot e^{i\frac{\pi}{8}\sigma_z}, \\ \\ T^\dagger &= \left(\begin{matrix} 1 & 0 \\ 0 & \frac{1 - i}{\sqrt{2}} \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the T-dagger gate \(T^\dagger_H\) is given by:

\[T^\dagger_H = HT^\dagger H = \frac{1}{2\sqrt{2}}\left(\begin{matrix} \sqrt{2} + 1 - i & \sqrt{2} - 1 + i \\ \sqrt{2} - 1 + i & \sqrt{2} + 1 - i \end{matrix}\right).\]

Operation examples

Standard basis

\[\begin{align} T^\dagger\,|0\rangle &= |0\rangle \\ \\ T^\dagger\,|1\rangle &= \frac{1 - i}{\sqrt{2}} |1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} T^\dagger\,|+\rangle &= \frac{\sqrt{2} + 1 - i}{2\sqrt{2}}|+\rangle + \frac{\sqrt{2} - 1 + i}{2\sqrt{2}}|-\rangle \\ \\ T^\dagger\,|-\rangle &= \frac{\sqrt{2} - 1 + i}{2\sqrt{2}}|+\rangle + \frac{\sqrt{2} + 1 - i}{2\sqrt{2}}|-\rangle \\ \end{align}\]