Skip to content

Z90 gate

Identifier Operator Example statement
Z90 \(Z^{1/2}\) Z90 q[0]

Description

The Z90 gate or Phase gate is an anti-clockwise rotation of \(\pi / 2\) [rad] about the \(\hat{\mathbf{z}}\)-axis and a global phase of \(\pi / 4\) [rad].

It is equal to the S gate: \(S = Z^{1/2}\).

Aliases

Also known as the S gate.

Properties

Representation

\[\begin{align} Z^{1/2} &= \left(\begin{matrix} 1 & 0 \\ 0 & i \end{matrix}\right) \end{align}\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The Z90 gate is given by:

\[\begin{align} Z^{1/2} &= R_\hat{\mathbf{n}}\left([0, 0, 1]^T, \frac{\pi}{2}, \frac{\pi}{4}\right) = e^{i\frac{\pi}{4}} \cdot e^{-i\frac{\pi}{4}\sigma_z}, \\ \\ Z^{1/2} &= \left(\begin{matrix} 1 & 0 \\ 0 & i \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Z90 gate \(Z^{1/2}_H\) is given by:

\[Z^{1/2}_H = HZ^{1/2}H = \frac{1}{2}\left(\begin{matrix} 1 + i & 1 - i \\ 1 - i & 1 + i \end{matrix}\right)=X^{1/2}.\]

Operation examples

Standard basis

\[\begin{align} Z^{1/2}\,|0\rangle &= |0\rangle \\ \\ Z^{1/2}\,|1\rangle &= i|1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} Z^{1/2}\,|+\rangle &= \frac{1 + i}{2}|+\rangle + \frac{1 - i}{2}|-\rangle \\ \\ Z^{1/2}\,|-\rangle &= \frac{1 - i}{2}|+\rangle + \frac{1 + i}{2}|-\rangle \\ \end{align}\]