Skip to content

Pauli-X gate

Identifier Operator Example statement
X \(X\) X q[0]

Description

The Pauli-X, or X, gate is an anti-clockwise rotation of \(\pi\) [rad] about the \(\hat{\mathbf{x}}\)-axis and a global phase of \(\pi/2\) [rad].

Aliases

Also known as the bit-flip gate.

Properties

Representation

\[X = \sigma_x = \sigma_1 = \left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right)\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The Pauli-X gate is given by:

\[\begin{align} X &= R_\hat{\mathbf{n}}\left([1, 0, 0]^T, \pi, \frac{\pi}{2}\right) = e^{i\frac{\pi}{2}} \cdot e^{-i\frac{\pi}{2} \sigma_x}, \\ \\ X &= \left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Pauli-X gate \(X_H\) is given by:

\[X_H = HXH = \left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix}\right)=Z.\]

Operation examples

Standard basis

\[\begin{align} X\,|0\rangle &= |1\rangle \\ \\ X\,|1\rangle &= |0\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} X\,|+\rangle &= |+\rangle \\ \\ X\,|-\rangle &= -|-\rangle \end{align}\]