Controlled phase shift gate
Identifier | Operator | Example statement |
---|---|---|
CR | \(CR(\theta)\) | CR(pi) q[0], q[1] |
Description
The Controlled phase shift, or CR, gate is a two-qubit gate. It is the controlled version of the phase shift gate, with angle \(\theta\) (radians).
The CR gate is a generalization of the CZ gate: \(CZ = CR(\pi)\)
Representation
\[\begin{align}
CR(\theta) &= \left(\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i\theta}
\end{matrix}\right)
\end{align}\]
which is equal to:
\[CR(\theta) = I \otimes |0\rangle\langle 0| + R(\theta) \otimes |1\rangle\langle 1|,\]
with
\[R(\theta) = \left(\begin{matrix}
1 & 0 \\
0 & e^{i\theta}
\end{matrix}\right).\]
Operation examples
Standard basis
\[\begin{align}
CR(\theta)\,|00\rangle &= |00\rangle \\
\\
CR(\theta)\,|01\rangle &= |01\rangle \\
\\
CR(\theta)\,|10\rangle &= |10\rangle \\
\\
CR(\theta)\,|11\rangle &= e^{i\theta}|11\rangle \\
\end{align}\]
Qubit state ordering
Note that qubits in a ket are ordered with qubit indices decreasing from left to right, i.e.,
\[|\psi\rangle = \sum c_i~|q_nq_{n-1}~...q_1q_0\rangle_i\]