Skip to content

S gate

Identifier Operator Example statement
S \(S\) S q[0]

Description

The S gate or Phase gate is an anti-clockwise rotation of \(\pi / 2\) [rad] about the \(\hat{\mathbf{z}}\)-axis and a global phase of \(\pi / 4\) [rad].

It is equal to half the \(Z\) rotation: \(S = Z^{1/2}\).

Aliases

Also known as the Z90 gate.

Properties

Representation

\[\begin{align} S &= \left(\begin{matrix} 1 & 0 \\ 0 & i \end{matrix}\right) \end{align}\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The Phase gate is given by:

\[\begin{align} S &= R_\hat{\mathbf{n}}\left([0, 0, 1]^T, \frac{\pi}{2}, \frac{\pi}{4}\right) = e^{i\frac{\pi}{4}} \cdot e^{-i\frac{\pi}{4}\sigma_z}, \\ \\ S &= \left(\begin{matrix} 1 & 0 \\ 0 & i \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Phase gate \(S_H\) is given by:

\[S_H = HSH = \frac{1}{2}\left(\begin{matrix} 1 + i & 1 - i \\ 1 - i & 1 + i \end{matrix}\right)=X^{1/2}.\]

Operation examples

Standard basis

\[\begin{align} S\,|0\rangle &= |0\rangle \\ \\ S\,|1\rangle &= i|1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} S\,|+\rangle &= \frac{1 + i}{2}|+\rangle + \frac{1 - i}{2}|-\rangle \\ \\ S\,|-\rangle &= \frac{1 - i}{2}|+\rangle + \frac{1 + i}{2}|-\rangle \\ \end{align}\]