Skip to content

Pauli-Y gate

Identifier Operator Example statement
Y \(Y\) Y q[0]

Description

The Pauli-Y, or Y, gate is an anti-clockwise rotation of \(\pi\) [rad] about the \(\hat{\mathbf{y}}\)-axis and a global phase of \(\pi/2\) [rad].

Properties

Representation

\[Y = \sigma_y = \sigma_2 = \left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix}\right)\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The Pauli-Y gate is given by:

\[\begin{align} Y &= R_\hat{\mathbf{n}}\left([0, 1, 0]^T, \pi, \frac{\pi}{2}\right) = e^{i\frac{\pi}{2}} \cdot e^{-i\frac{\pi}{2}\sigma_y}, \\ \\ Y &= \left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the Pauli-Y gate \(Y_H\) is given by:

\[Y_H = HYH = \left(\begin{matrix} 0 & i \\ -i & 0 \end{matrix}\right)=-Y=Y^T.\]

Operation examples

Standard basis

\[\begin{align} Y\,|0\rangle &= i|1\rangle \\ \\ Y\,|1\rangle &= -i|0\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} Y\,|+\rangle &= -i|-\rangle \\ \\ Y\,|-\rangle &= i|+\rangle \end{align}\]