Skip to content

X90 gate

Identifier Operator Example statement
X90 \(X^{1/2}\) X90 q[0]

Description

The X90 gate is an anti-clockwise rotation of \(\pi/2\) [rad] about the \(\hat{\mathbf{x}}\)-axis and a global phase of \(\pi/4\) [rad].

It is equal to half the \(X\) rotation: \(X^{1/2}\)

Aliases

Also known as the V gate.

Properties

Representation

\[\begin{align} X^{1/2} &= V = \frac{1}{2}\left(\begin{matrix} 1 + i & 1 - i \\ 1 - i & 1 + i \end{matrix}\right). \end{align}\]

Any single-qubit operation in \(U(2)\) (including global phase) can be expressed by 5 parameters in the canonical representation \(R_\hat{\mathbf{n}}\)

\[R_\hat{\mathbf{n}}\left([n_x, n_y, n_z]^T, \theta, \phi\right) = e^{i\phi} \cdot e^{-i\frac{\theta}{2}\left(n_x\cdot\sigma_x + n_y\cdot\sigma_y + n_z\cdot\sigma_z\right)},\]

where \(\hat{\mathbf{n}}=[n_x, n_y, n_z]^T\) denotes the axis of rotation, \(\theta\in(-\pi, \pi]\) the angle of rotation [rad], and \(\phi\in[0,2\pi)\) the global phase angle [rad].

The X90 gate is given by:

\[\begin{align} X^{1/2} &= R_\hat{\mathbf{n}}\left([1, 0, 0]^T, \frac{\pi}{2}, \frac{\pi}{4}\right) = e^{i\frac{\pi}{4}} \cdot e^{-i\frac{\pi}{4}\sigma_x}, \\ \\ X^{1/2} &= \frac{1}{2}\left(\begin{matrix} 1 + i & 1 - i \\ 1 - i & 1 + i \end{matrix}\right). \end{align}\]

In the Hadamard basis \(\{|+\rangle, |-\rangle\}\), the X90 gate \(X^{1/2}_H\) is given by:

\[X^{1/2}_H = HX^{1/2}H = \left(\begin{matrix} 1 & 0 \\ 0 & i \end{matrix}\right)=S.\]

Operation examples

Standard basis

\[\begin{align} X^{1/2}\,|0\rangle &= \frac{1 + i}{2}|0\rangle + \frac{1 - i}{2}|1\rangle \\ \\ X^{1/2}\,|1\rangle &= \frac{1 - i}{2}|0\rangle + \frac{1 + i}{2}|1\rangle \\ \end{align}\]

Hadamard basis

\[\begin{align} X^{1/2}\,|+\rangle &= |+\rangle \\ \\ X^{1/2}\,|-\rangle &= i|-\rangle \end{align}\]