Basic Git Commands

Last updated on 2025-02-10 | Edit this page

Estimated time: 60 minutes

Overview

Questions

  • How do I record changes in Git?
  • How do I record notes about what changes I made and why?
  • How can I identify old versions of files?
  • How do I review my changes?
  • How can I recover old versions of files?
  • How can I tell Git to ignore files I don’t want to track?

Objectives

  • Go through the modify-add-commit cycle for one or more files.
  • Explain where information is stored at each stage of that cycle.
  • Distinguish between descriptive and non-descriptive commit messages.
  • Explain what the HEAD of a repository is and how to use it.
  • Compare various versions of tracked files.
  • Restore old versions of files.
  • Configure Git to ignore specific files.

The Modify-Add-Commit Cycle


In this episode we will continue working with the recipes repository you have created in the previous episode. First let’s make sure we’re still in the right directory. You should be in the recipes directory.

BASH

$ cd ~/Desktop/recipes

Let’s create a file called guacamole.md that contains the basic structure to have a recipe. We will use nano to edit the file, but feel free to use another text editor if you prefer. In particular, this does not have to be the core.editor you set globally earlier. But remember, the steps to create create or edit a new file will depend on the editor you choose (it might not be nano).

BASH

$ nano guacamole.md

Type the text below into the guacamole.md file:

OUTPUT

# Guacamole
## Ingredients
## Instructions

Save the file and exit your editor. Next, let’s verify that the file was properly created by running the list command (ls):

BASH

$ ls

OUTPUT

guacamole.md

guacamole.md contains three lines, which we can see by running:

BASH

$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
## Instructions

If we check the status of our project again, Git tells us that it’s noticed the new file:

BASH

$ git status

OUTPUT

On branch main

No commits yet

Untracked files:
   (use "git add <file>..." to include in what will be committed)

	guacamole.md

nothing added to commit but untracked files present (use "git add" to track)

The “untracked files” message means that there’s a file in the directory that Git isn’t keeping track of. We can tell Git to track a file using git add:

BASH

$ git add guacamole.md

and then check that the right thing happened:

BASH

$ git status

OUTPUT

On branch main

No commits yet

Changes to be committed:
  (use "git rm --cached <file>..." to unstage)

	new file:   guacamole.md

Git now knows that it’s supposed to keep track of guacamole.md, but it hasn’t recorded these changes as a commit yet. To get it to do that, we need to run one more command:

BASH

$ git commit -m "Create a template for recipe"

OUTPUT

[main (root-commit) f22b25e] Create a template for recipe
 1 file changed, 1 insertion(+)
 create mode 100644 guacamole.md

When we run git commit, Git takes everything we have told it to save by using git add and stores a copy permanently inside the special .git directory. This permanent copy is called a commit (or revision) and its short identifier is f22b25e. Your commit may have another identifier.

We use the -m flag (for “message”) to record a short, descriptive, and specific comment that will help us remember later on what we did and why. If we just run git commit without the -m option, Git will launch nano (or whatever other editor we configured as core.editor) so that we can write a longer message.

Good commit messages start with a brief (<50 characters) statement about the changes made in the commit. Generally, the message should complete the sentence “If applied, this commit will” . If you want to go into more detail, add a blank line between the summary line and your additional notes. Use this additional space to explain why you made changes and/or what their impact will be.

If we run git status now:

BASH

$ git status

OUTPUT

On branch main
nothing to commit, working tree clean

it tells us everything is up to date. If we want to know what we’ve done recently, we can ask Git to show us the project’s history using git log:

BASH

$ git log

OUTPUT

commit f22b25e3233b4645dabd0d81e651fe074bd8e73b
Author: Alfredo Linguini <a.linguini@ratatouille.fr>
Date:   Thu Aug 22 09:51:46 2023 -0400

    Create a template for recipe

git log lists all commits made to a repository in reverse chronological order. The listing for each commit includes the commit’s full identifier (which starts with the same characters as the short identifier printed by the git commit command earlier), the commit’s author, when it was created, and the log message Git was given when the commit was created.

Where Are My Changes?

If we run ls at this point, we will still see just one file called guacamole.md. That’s because Git saves information about files’ history in the special .git directory mentioned earlier so that our filesystem doesn’t become cluttered (and so that we can’t accidentally edit or delete an old version).

Practice using graphical Git tools

Using the graphical Git tools in PyCharm repeat the basic Git commands explained so far:

  • Add a new file to the “recipes” repo
  • Check which files are not yet committed
  • Commit the file
Adding a file to a Git repo using PyCharm

Now suppose Alfredo adds more information to the file. (Again, we’ll edit with nano and then cat the file to show its contents; you may use a different editor, and don’t need to cat.)

BASH

$ nano guacamole.md
$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
* avocado
* lemon
* salt
## Instructions

When we run git status now, it tells us that a file it already knows about has been modified:

BASH

$ git status

OUTPUT

On branch main
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git restore <file>..." to discard changes in working directory)

	modified:   guacamole.md

no changes added to commit (use "git add" and/or "git commit -a")

The last line is the key phrase: “no changes added to commit”. We have changed this file, but we haven’t told Git we will want to save those changes (which we do with git add) nor have we saved them (which we do with git commit). So let’s do that now. It is good practice to always review our changes before saving them. We do this using git diff. This shows us the differences between the current state of the file and the most recently saved version:

BASH

$ git diff

OUTPUT

diff --git a/guacamole.md b/guacamole.md
index df0654a..315bf3a 100644
--- a/guacamole.md
+++ b/guacamole.md
@@ -1,3 +1,6 @@
 # Guacamole
 ## Ingredients
+* avocado
+* lemon
+* salt
 ## Instructions

The output is cryptic because it is actually a series of commands for tools like editors and patch telling them how to reconstruct one file given the other. If we break it down into pieces:

  1. The first line tells us that Git is producing output similar to the Unix diff command comparing the old and new versions of the file.
  2. The second line tells exactly which versions of the file Git is comparing; df0654a and 315bf3a are unique computer-generated labels for those versions.
  3. The third and fourth lines once again show the name of the file being changed.
  4. The remaining lines are the most interesting, they show us the actual differences and the lines on which they occur. In particular, the + marker in the first column shows where we added a line.

After reviewing our change, it’s time to commit it:

BASH

$ git commit -m "Add basic guacamole's ingredients"
$ git status

OUTPUT

On branch main
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git restore <file>..." to discard changes in working directory)

	modified:   guacamole.md

no changes added to commit (use "git add" and/or "git commit -a")

Whoops: Git won’t commit because we didn’t use git add first. Let’s fix that:

BASH

$ git add guacamole.md
$ git commit -m "Add basic guacamole's ingredients"

OUTPUT

[main 34961b1] Add basic guacamole's ingredient
 1 file changed, 3 insertions(+)

Git insists that we add files to the set we want to commit before actually committing anything. This allows us to commit our changes in stages and capture changes in logical portions rather than only large batches. For example, suppose we’re adding a few citations to relevant research to our thesis. We might want to commit those additions, and the corresponding bibliography entries, but not commit some of our work drafting the conclusion (which we haven’t finished yet).

To allow for this, Git has a special staging area where it keeps track of things that have been added to the current changeset but not yet committed.

Staging Area

If you think of Git as taking snapshots of changes over the life of a project, git add specifies what will go in a snapshot (putting things in the staging area), and git commit then actually takes the snapshot, and makes a permanent record of it (as a commit). If you don’t have anything staged when you type git commit, Git will prompt you to use git commit -a or git commit --all, which is kind of like gathering everyone to take a group photo! However, it’s almost always better to explicitly add things to the staging area, because you might commit changes you forgot you made. (Going back to the group photo simile, you might get an extra with incomplete makeup walking on the stage for the picture because you used -a!) Try to stage things manually, or you might find yourself searching for “git undo commit” more than you would like!

A diagram showing how "git add" registers changes in the staging area, while "git commit" moves changes from the staging area to the repository

Let’s watch as our changes to a file move from our editor to the staging area and into long-term storage. First, we’ll improve our recipe by changing ‘lemon’ to ‘lime’:

BASH

$ nano guacamole.md
$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
* avocado
* lime
* salt
## Instructions

BASH

$ git diff

OUTPUT

diff --git a/guacamole.md b/guacamole.md
index 315bf3a..b36abfd 100644
--- a/guacamole.md
+++ b/guacamole.md
@@ -1,6 +1,6 @@
 # Guacamole
 ## Ingredients
 * avocado
-* lemon
+* lime
 * salt
 ## Instructions

So far, so good: we’ve replaced one line (shown with a - in the first column) with a new line (shown with a + in the first column). Now let’s put that change in the staging area and see what git diff reports:

BASH

$ git add guacamole.md
$ git diff

There is no output: as far as Git can tell, there’s no difference between what it’s been asked to save permanently and what’s currently in the directory. However, if we do this:

BASH

$ git diff --staged

OUTPUT

diff --git a/guacamole.md b/guacamole.md
index 315bf3a..b36abfd 100644
--- a/guacamole.md
+++ b/guacamole.md
@@ -1,6 +1,6 @@
 # Guacamole
 ## Ingredients
 * avocado
-* lemon
+* lime
 * salt
 ## Instructions

it shows us the difference between the last committed change and what’s in the staging area. Let’s save our changes:

BASH

$ git commit -m "Modify guacamole to the traditional recipe"

OUTPUT

[main 005937f] Modify guacamole to the traditional recipe
 1 file changed, 1 insertion(+)

check our status:

BASH

$ git status

OUTPUT

On branch main
nothing to commit, working tree clean

and look at the history of what we’ve done so far:

BASH

$ git log

OUTPUT

commit 005937fbe2a98fb83f0ade869025dc2636b4dad5 (HEAD -> main)
Author: Alfredo Linguini <a.linguini@ratatouille.fr>
Date:   Thu Aug 22 10:14:07 2023 -0400

    Modify guacamole to the traditional recipe

commit 34961b159c27df3b475cfe4415d94a6d1fcd064d
Author: Alfredo Linguini <a.linguini@ratatouille.fr>
Date:   Thu Aug 22 10:07:21 2023 -0400

    Add basic guacamole's ingredients

commit f22b25e3233b4645dabd0d81e651fe074bd8e73b
Author: Alfredo Linguini <a.linguini@ratatouille.fr>
Date:   Thu Aug 22 09:51:46 2023 -0400

    Create a template for recipe

Word-based diffing

Sometimes, e.g. in the case of the text documents a line-wise diff is too coarse. That is where the --color-words option of git diff comes in very useful as it highlights the changed words using colors.

Paging the Log

When the output of git log is too long to fit in your screen, git uses a program to split it into pages of the size of your screen. When this “pager” is called, you will notice that the last line in your screen is a :, instead of your usual prompt.

  • To get out of the pager, press Q.
  • To move to the next page, press Spacebar.
  • To search for some_word in all pages, press / and type some_word. Navigate through matches pressing N.

Limit Log Size

To avoid having git log cover your entire terminal screen, you can limit the number of commits that Git lists by using -N, where N is the number of commits that you want to view. For example, if you only want information from the last commit you can use:

BASH

$ git log -1

OUTPUT

commit 005937fbe2a98fb83f0ade869025dc2636b4dad5 (HEAD -> main)
Author: Alfredo Linguini <a.linguini@ratatouille.fr>
Date:   Thu Aug 22 10:14:07 2023 -0400

   Modify guacamole to the traditional recipe

You can also reduce the quantity of information using the --oneline option:

BASH

$ git log --oneline

OUTPUT

005937f (HEAD -> main) Modify guacamole to the traditional recipe
34961b1 Add basic guacamole's ingredients
f22b25e Create a template for recipe

You can also combine the --oneline option with others. One useful combination adds --graph to display the commit history as a text-based graph and to indicate which commits are associated with the current HEAD, the current branch main, or other Git references:

BASH

$ git log --oneline --graph

OUTPUT

* 005937f (HEAD -> main) Modify guacamole to the traditional recipe
* 34961b1 Add basic guacamole's ingredients
* f22b25e Create a template for recipe

Directories

Two important facts you should know about directories in Git.

  1. Git does not track directories on their own, only files within them. Try it for yourself:

BASH

$ mkdir cakes
$ git status
$ git add cakes
$ git status

Note, our newly created empty directory cakes does not appear in the list of untracked files even if we explicitly add it (via git add) to our repository. This is the reason why you will sometimes see .gitkeep files in otherwise empty directories. Unlike .gitignore, these files are not special and their sole purpose is to populate a directory so that Git adds it to the repository. In fact, you can name such files anything you like.

  1. If you create a directory in your Git repository and populate it with files, you can add all files in the directory at once by:

BASH

$ git add <directory-with-files>

Try it for yourself:

BASH

$ touch cakes/brownie cakes/lemon_drizzle
$ git status
$ git add cakes
$ git status

Before moving on, we will commit these changes.

BASH

$ git commit -m "Add some initial cakes"

To recap, when we want to add changes to our repository, we first need to add the changed files to the staging area (git add) and then commit the staged changes to the repository (git commit):

A diagram showing two documents being separately staged using git add, before being combined into one commit using git commit

Choosing a Commit Message

Which of the following commit messages would be most appropriate for the last commit made to guacamole.md?

  1. “Changes”
  2. “Changed lemon for lime”
  3. “Guacamole modified to the traditional recipe”

Answer 1 is not descriptive enough, and the purpose of the commit is unclear; and answer 2 is redundant to using “git diff” to see what changed in this commit; but answer 3 is good: short, descriptive, and imperative.

Committing Changes to Git

Which command(s) below would save the changes of myfile.txt to my local Git repository?

  1. BASH

       $ git commit -m "my recent changes"
  2. BASH

       $ git init myfile.txt
       $ git commit -m "my recent changes"
  3. BASH

       $ git add myfile.txt
       $ git commit -m "my recent changes"
  4. BASH

       $ git commit -m myfile.txt "my recent changes"
  1. Would only create a commit if files have already been staged.
  2. Would try to create a new repository.
  3. Is correct: first add the file to the staging area, then commit.
  4. Would try to commit a file “my recent changes” with the message myfile.txt.

Committing Multiple Files

The staging area can hold changes from any number of files that you want to commit as a single snapshot.

  1. Add some text to guacamole.md noting the rough price of the ingredients.
  2. Create a new file groceries.md with a list of products and their prices for different markets.
  3. Add changes from both files to the staging area, and commit those changes.

First we make our changes to the guacamole.md and groceries.md files:

BASH

$ nano guacamole.md
$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
* avocado (1.35)
* lime (0.64)
* salt (2)

BASH

$ nano groceries.md
$ cat groceries.md

OUTPUT

# Market A
* avocado: 1.35 per unit.
* lime: 0.64 per unit
* salt: 2 per kg

Now you can add both files to the staging area. We can do that in one line:

BASH

$ git add guacamole.md groceries.md

Or with multiple commands:

BASH

$ git add guacamole.md
$ git add groceries.md

Now the files are ready to commit. You can check that using git status. If you are ready to commit use:

BASH

$ git commit -m "Write prices for ingredients and their source"

OUTPUT

[main cc127c2]
 Write prices for ingredients and their source
 2 files changed, 7 insertions(+)
 create mode 100644 groceries.md

Practice using graphical Git tools

Using the graphical Git tools in PyCharm repeat the basic Git commands explained so far:

  • In the “recipes” repo, modify the guacamole.md recipe.
  • Visually inspect what has been changed in the file.
  • Commit the file, and visually inspect the Git commit log.

Visually diff-ing in PyCharm:   Git diff using PyCharm

    Visually inspecting commit logs:

Exploring Git repo history using PyCharm

Key Points

  • git status shows the status of a repository.
  • Files can be stored in a project’s working directory (which users see), the staging area (where the next commit is being built up) and the local repository (where commits are permanently recorded).
  • git add puts files in the staging area.
  • git commit saves the staged content as a new commit in the local repository.
  • Write a commit message that accurately describes your changes.

Exploring History


As we saw in the previous episode, we can refer to commits by their identifiers. You can refer to the most recent commit of the working directory by using the identifier HEAD.

We’ve been adding small changes at a time to guacamole.md, so it’s easy to track our progress by looking, so let’s do that using our HEADs. Before we start, let’s make a change to guacamole.md, adding yet another line.

BASH

$ nano guacamole.md
$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
* avocado
* lime
* salt
## Instructions
An ill-considered change

Now, let’s see what we get.

BASH

$ git diff HEAD guacamole.md

OUTPUT

diff --git a/guacamole.md b/guacamole.md
index b36abfd..0848c8d 100644
--- a/guacamole.md
+++ b/guacamole.md
@@ -4,3 +4,4 @@
 * lime
 * salt
 ## Instructions
+An ill-considered change

which is the same as what you would get if you leave out HEAD (try it). The real goodness in all this is when you can refer to previous commits. We do that by adding ~1 (where “~” is “tilde”, pronounced [til-duh]) to refer to the commit one before HEAD.

BASH

$ git diff HEAD~1 guacamole.md

If we want to see the differences between older commits we can use git diff again, but with the notation HEAD~1, HEAD~2, and so on, to refer to them:

BASH

$ git diff HEAD~2 guacamole.md

OUTPUT

diff --git a/guacamole.md b/guacamole.md
index df0654a..b36abfd 100644
--- a/guacamole.md
+++ b/guacamole.md
@@ -1,3 +1,6 @@
 # Guacamole
 ## Ingredients
+* avocado
+* lime
+* salt
 ## Instructions

We could also use git show which shows us what changes we made at an older commit as well as the commit message, rather than the differences between a commit and our working directory that we see by using git diff.

BASH

$ git show HEAD~2 guacamole.md

OUTPUT

commit f22b25e3233b4645dabd0d81e651fe074bd8e73b
Author: Alfredo Linguini <a.linguini@ratatouille.fr>
Date:   Thu Aug 22 10:07:21 2023 -0400

    Create a template for recipe

diff --git a/guacamole.md b/guacamole.md
new file mode 100644
index 0000000..df0654a
--- /dev/null
+++ b/guacamole.md
@@ -0,0 +1,3 @@
+# Guacamole
+## Ingredients
+## Instructions

In this way, we can build up a chain of commits. The most recent end of the chain is referred to as HEAD; we can refer to previous commits using the ~ notation, so HEAD~1 means “the previous commit”, while HEAD~123 goes back 123 commits from where we are now.

We can also refer to commits using those long strings of digits and letters that both git log and git show display. These are unique IDs for the changes, and “unique” really does mean unique: every change to any set of files on any computer has a unique 40-character identifier. Our first commit was given the ID f22b25e3233b4645dabd0d81e651fe074bd8e73b, so let’s try this:

BASH

$ git diff f22b25e3233b4645dabd0d81e651fe074bd8e73b guacamole.md

OUTPUT

diff --git a/guacamole.md b/guacamole.md
index df0654a..93a3e13 100644
--- a/guacamole.md
+++ b/guacamole.md
@@ -1,3 +1,7 @@
 # Guacamole
 ## Ingredients
+* avocado
+* lime
+* salt
 ## Instructions
+An ill-considered change

That’s the right answer, but typing out random 40-character strings is annoying, so Git lets us use just the first few characters (typically seven for normal size projects):

BASH

$ git diff f22b25e guacamole.md

OUTPUT

diff --git a/guacamole.md b/guacamole.md
index df0654a..93a3e13 100644
--- a/guacamole.md
+++ b/guacamole.md
@@ -1,3 +1,7 @@
 # Guacamole
 ## Ingredients
+* avocado
+* lime
+* salt
 ## Instructions
+An ill-considered change

All right! So we can save changes to files and see what we’ve changed. Now, how can we restore older versions of things? Let’s suppose we change our mind about the last update to guacamole.md (the “ill-considered change”).

git status now tells us that the file has been changed, but those changes haven’t been staged:

BASH

$ git status

OUTPUT

On branch main
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git restore <file>..." to discard changes in working directory)
    modified:   guacamole.md

no changes added to commit (use "git add" and/or "git commit -a")

We can put things back the way they were by using git restore:

BASH

$ git restore guacamole.md
$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
* avocado
* lime
* salt
## Instructions

As you might guess from its name, git restore restores an old version of a file. By default, it recovers the version of the file recorded in HEAD, which is the last saved commit. If we want to go back even further, we can use a commit identifier instead, using -s option:

BASH

$ git restore -s f22b25e guacamole.md

BASH

$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
## Instructions

BASH

$ git status

OUTPUT

On branch main
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git restore <file>..." to discard changes in working directory)
    modified:   guacamole.md

no changes added to commit (use "git add" and/or "git commit -a")

Notice that the changes are not currently in the staging area, and have not been committed. If we wished, we can put things back the way they were at the last commit by using git restore to overwrite the working copy with the last committed version:

BASH

$ git restore guacamole.md
$ cat guacamole.md

OUTPUT

# Guacamole
## Ingredients
* avocado
* lime
* salt
## Instructions

It’s important to remember that we must use the commit number that identifies the state of the repository before the change we’re trying to undo. A common mistake is to use the number of the commit in which we made the change we’re trying to discard. In the example below, we want to retrieve the state from before the most recent commit (HEAD~1), which is commit f22b25e. We use the . to mean all files:

A diagram showing how git restore can be used to restore the previous version of two files

So, to put it all together, here’s how Git works in cartoon form:

A diagram showing the entire git workflow: local changes are staged using git add, applied to the local repository using git commit, and can be restored from the repository using git checkout

The fact that files can be reverted one by one tends to change the way people organize their work. If everything is in one large document, it’s hard (but not impossible) to undo changes to the introduction without also undoing changes made later to the conclusion. If the introduction and conclusion are stored in separate files, on the other hand, moving backward and forward in time becomes much easier.

Recovering Older Versions of a File

Jennifer has made changes to the Python script that she has been working on for weeks, and the modifications she made this morning “broke” the script and it no longer runs. She has spent ~ 1hr trying to fix it, with no luck…

Luckily, she has been keeping track of her project’s versions using Git! Which commands below will let her recover the last committed version of her Python script called data_cruncher.py?

  1. $ git restore

  2. $ git restore data_cruncher.py

  3. $ git restore -s HEAD~1 data_cruncher.py

  4. $ git restore -s <unique ID of last commit> data_cruncher.py

  5. Both 2 and 4

The answer is (5)-Both 2 and 4.

The restore command restores files from the repository, overwriting the files in your working directory. Answers 2 and 4 both restore the latest version in the repository of the file data_cruncher.py. Answer 2 uses HEAD to indicate the latest, whereas answer 4 uses the unique ID of the last commit, which is what HEAD means.

Answer 3 gets the version of data_cruncher.py from the commit before HEAD, which is NOT what we wanted.

Answer 1 results in an error. You need to specify a file to restore. If you want to restore all files you should use git restore .

Reverting a Commit

Jennifer is collaborating with colleagues on her Python script. She realizes her last commit to the project’s repository contained an error, and wants to undo it. Jennifer wants to undo correctly so everyone in the project’s repository gets the correct change. The command git revert [erroneous commit ID] will create a new commit that reverses the erroneous commit.

The command git revert is different from git restore -s [commit ID] . because git restore returns the files not yet committed within the local repository to a previous state, whereas git revert reverses changes committed to the local and project repositories.

Below are the right steps and explanations for Jennifer to use git revert, what is the missing command?

  1. ________ # Look at the git history of the project to find the commit ID

  2. Copy the ID (the first few characters of the ID, e.g. 0b1d055).

  3. git revert [commit ID]

  4. Type in the new commit message.

  5. Save and close.

The command git log lists project history with commit IDs.

The command git show HEAD shows changes made at the latest commit, and lists the commit ID; however, Jennifer should double-check it is the correct commit, and no one else has committed changes to the repository.

Understanding Workflow and History

What is the output of the last command in

BASH

$ cd recipes
$ echo "I like tomatoes, therefore I like ketchup" > ketchup.md
$ git add ketchup.md
$ echo "ketchup enhances pasta dishes" >> ketchup.md
$ git commit -m "My opinions about the red sauce"
$ git restore ketchup.md
$ cat ketchup.md # this will print the content of ketchup.md on screen
  1. OUTPUT

       ketchup enhances pasta dishes
  2. OUTPUT

       I like tomatoes, therefore I like ketchup
  3. OUTPUT

       I like tomatoes, therefore I like ketchup
       ketchup enhances pasta dishes
  4. OUTPUT

       Error because you have changed ketchup.md without committing the changes

The answer is 2.

The changes to the file from the second echo command are only applied to the working copy, The command git add ketchup.md places the current version of ketchup.md into the staging area. not the version in the staging area.

So, when git commit -m "My opinions about the red sauce" is executed, the version of ketchup.md committed to the repository is the one from the staging area and has only one line.

At this time, the working copy still has the second line (and git status will show that the file is modified). However, git restore ketchup.md replaces the working copy with the most recently committed version of ketchup.md. So, cat ketchup.md will output

OUTPUT

I like tomatoes, therefore I like ketchup

Checking Understanding of git diff

Consider this command: git diff HEAD~9 guacamole.md. What do you predict this command will do if you execute it? What happens when you do execute it? Why?

Try another command, git diff [ID] guacamole.md, where [ID] is replaced with the unique identifier for your most recent commit. What do you think will happen, and what does happen?

Getting Rid of Staged Changes

git restore can be used to restore a previous commit when unstaged changes have been made, but will it also work for changes that have been staged but not committed? Make a change to guacamole.md, add that change using git add, then use git restore to see if you can remove your change.

After adding a change, git restore can not be used directly. Let’s look at the output of git status:

OUTPUT

On branch main
Changes to be committed:
  (use "git restore --staged <file>..." to unstage)
        modified:   guacamole.md

Note that if you don’t have the same output you may either have forgotten to change the file, or you have added it and committed it.

Using the command git restore guacamole.md now does not give an error, but it does not restore the file either. Git helpfully tells us that we need to use git restore --staged first to unstage the file:

BASH

$ git restore --staged guacamole.md

Now, git status gives us:

BASH

$ git status

OUTPUT

On branch main
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git git restore <file>..." to discard changes in working directory)
        modified:   guacamole.md

no changes added to commit (use "git add" and/or "git commit -a")

This means we can now use git restore to restore the file to the previous commit:

BASH

$ git restore guacamole.md
$ git status

OUTPUT

On branch main
nothing to commit, working tree clean

Practice using graphical Git tools

Using the graphical Git tools in PyCharm repeat the basic Git commands explained so far:

  1. Revert un-staged changes in the guacamole.md recipe.
  2. Revert the guacamole.md recipe to an earlier commit - HEAD~2.
  3. Examine changes between HEAD~1 and HEAD~5.
  1. Discarding un-staged changes with PyCharm:   Git rollback using PyCharm

         

  1. “Revert the guacamole.md recipe to an earlier commit - HEAD~2”:

BASH

$ git restore -s HEAD~2 guacamole.md

This was actually a tricky question! PyCharm does not provide a direct GUI option to revert a file to a specific Git revision. This is one example of GUI tools limitations, which shows the importance of understanding and mastering Git from the command line.

         

  1. Comparing two Git revisions:
Comparing two Git revisions using PyCharm

Key Points

  • git diff displays differences between commits.
  • git restore recovers old versions of files.

Ignoring Things


What if we have files that we do not want Git to track for us, like backup files created by our editor or intermediate files created during data analysis? Let’s create a few dummy files:

BASH

$ mkdir receipts
$ touch a.png b.png c.png receipts/a.jpg receipts/b.jpg

and see what Git says:

BASH

$ git status

OUTPUT

On branch main
Untracked files:
  (use "git add <file>..." to include in what will be committed)

	a.png
	b.png
	c.png
	receipts/

nothing added to commit but untracked files present (use "git add" to track)

Putting these files under version control would be a waste of disk space. What’s worse, having them all listed could distract us from changes that actually matter, so let’s tell Git to ignore them.

We do this by creating a file in the root directory of our project called .gitignore:

BASH

$ nano .gitignore
$ cat .gitignore

OUTPUT

*.png
receipts/

These patterns tell Git to ignore any file whose name ends in .png and everything in the receipts directory. (If any of these files were already being tracked, Git would continue to track them.)

Once we have created this file, the output of git status is much cleaner:

BASH

$ git status

OUTPUT

On branch main
Untracked files:
  (use "git add <file>..." to include in what will be committed)

	.gitignore

nothing added to commit but untracked files present (use "git add" to track)

The only thing Git notices now is the newly-created .gitignore file. You might think we wouldn’t want to track it, but everyone we’re sharing our repository with will probably want to ignore the same things that we’re ignoring. Let’s add and commit .gitignore:

BASH

$ git add .gitignore
$ git commit -m "Ignore png files and the receipts folder."
$ git status

OUTPUT

On branch main
nothing to commit, working tree clean

As a bonus, using .gitignore helps us avoid accidentally adding files to the repository that we don’t want to track:

BASH

$ git add a.png

OUTPUT

The following paths are ignored by one of your .gitignore files:
a.png
Use -f if you really want to add them.

If we really want to override our ignore settings, we can use git add -f to force Git to add something. For example, git add -f a.csv. We can also always see the status of ignored files if we want:

BASH

$ git status --ignored

OUTPUT

On branch main
Ignored files:
 (use "git add -f <file>..." to include in what will be committed)

        a.png
        b.png
        c.png
        receipts/

nothing to commit, working tree clean

Ignoring Nested Files

Given a directory structure that looks like:

BASH

receipts/data
receipts/plots

How would you ignore only receipts/plots and not receipts/data?

If you only want to ignore the contents of receipts/plots, you can change your .gitignore to ignore only the /plots/ subfolder by adding the following line to your .gitignore:

OUTPUT

receipts/plots/

This line will ensure only the contents of receipts/plots is ignored, and not the contents of receipts/data.

Including Specific Files

How would you ignore all .png files in your root directory except for final.png? Hint: Find out what ! (the exclamation point operator) does

You would add the following two lines to your .gitignore:

OUTPUT

*.png           # ignore all png files
!final.png      # except final.png

The exclamation point operator will include a previously excluded entry.

Note also that because you’ve previously committed .png files in this lesson they will not be ignored with this new rule. Only future additions of .png files added to the root directory will be ignored.

Ignoring all data Files in a Directory

Assuming you have an empty .gitignore file, and given a directory structure that looks like:

BASH

receipts/data/market_position/gps/a.dat
receipts/data/market_position/gps/b.dat
receipts/data/market_position/gps/c.dat
receipts/data/market_position/gps/info.txt
receipts/plots

What’s the shortest .gitignore rule you could write to ignore all .dat files in result/data/market_position/gps? Do not ignore the info.txt.

Appending receipts/data/market_position/gps/*.dat will match every file in receipts/data/market_position/gps that ends with .dat. The file receipts/data/market_position/gps/info.txt will not be ignored.

Ignoring all data Files in the repository

Let us assume you have many .csv files in different subdirectories of your repository. For example, you might have:

BASH

results/a.csv
data/experiment_1/b.csv
data/experiment_2/c.csv
data/experiment_2/variation_1/d.csv

How do you ignore all the .csv files, without explicitly listing the names of the corresponding folders?

In the .gitignore file, write:

OUTPUT

**/*.csv

This will ignore all the .csv files, regardless of their position in the directory tree. You can still include some specific exception with the exclamation point operator.

Key Points

  • The .gitignore file is a text file that tells Git which files to track and which to ignore in the repository.
  • You can list specific files or folders to be ignored by Git, or you can include files that would normally be ignored.